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Abstract-h the present work we have obtained the numerical solutions of the momentum and energy 
equation for blood flowing in a tube. It is assumed that the non-Newtonian behavior of blood can be 
expressed through the Casson equation. The numerical procedure used is that of Patankar and 
Spalding [l]. The results have been obtained for the two cases, (i) the uniform surface temperature 

and (ii) the uniform surface heat flux and for the yield number Y( = ry D/Up) = 0, 0.1, 1,2, 5, 10 and 20. 

NOMENCLATURE 

heat capacity; 
tube diameter; 
defined equation (4.5); 
heat-transfer coefficient; 
heat-transfer coefficient; 
thermal conductivity; 
number of radial grid divisions; 
Nusselt number; 
Nusselt number; 
pressure; 
Prandtl number; 
heat flux per unit area; 
defined equation (4.5); 
radial direction; 
defined equation (4.5); 
temperature; 
centerline temperature; 
entrance temperature; 
mean temperature; 
wall temperature; 
axial velocity component; 
average velocity; 
radial velocity component; 
downstream distance; 
normal direction; 
defined in equation (4.5); 
yield number; 
dimensionless downstream distance 
(= x/DRePr); 

dimensionless downstream distance l/Z. 

Greek symbols 

6 thermal diffusivity; 

?. shear rate of strain; 
en, dimensionless temperature constant heat 

flux; 
0T, dimensionless temperature constant surface 

temperature; 

P? constant equation (2.5); 

*Present address: Atlantic Richfield Co., Harvey, 
I1 60426, U.S.A. 

P> density; 

r, shear stress; 

z,, wall shear stress; 

TY’ yield stress; 

6, dependent variable; 

Y, parameter equation (4.1); 

w, dimensionless stream function. 

Subscripts 

c, 
eff. 

position of equation (4.1); 
effective. 

1. INTRODUCTION 

LITTLE is known definitely about the effect of the 
temperature of human blood. From a physiological 
standpoint the ideal temperature for blood is 37°C. 
However, blood can function with reduced ability to 
absorb oxygen and desorb carbon dioxide in a range 
of temperatures from 30 to 45°C. Blood can survive 
for a long period of time if frozen ( - 5” to - 10°C) and 
thawed in an appropriate manner. Above 45°C the 
proteins in the blood will start to precipitate out of the 
plasma and will coagulate. Enzymes in the blood do not 
function well above 45°C. Change of blood temperature 
of this degree is unlikely to occur within a body as the 
normal body temperature regulation system will 
activate in an attempt to reverse this effect. 

Many situations now exist in which the blood is 
removed from a body to be processed (for example, 
oxygenation, hemodialysis, etc.) and returned to the 
body. While in the body, temperature control of the 
blood is almost never a problem; however, whenever 
the blood is out of the body, temperature control 
becomes important in order to prevent damage. The 
information about the temperature field for blood 
flowing in a tube is, therefore, of practical significance. 

Fluid entering a tube with uniform velocity and 
temperature profiles undergoes development during its 
course of flow. The development of velocity and 
temperature profiles is due to the growth of hydro- 
dynamic and thermal boundary layers on the wall of a 
tube. As fluid progresses, the boundary layers grow 
until they intersect with the layers from the opposite 
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side. After the point of intersection. the flow is con- 
sidered fully developed. The portion of the tube wherein 
the boundary layers are developing is called the 

entrance region. The velocity and temperature profiles 
may develop at different rates. Whether the velocity 
profile developed faster or slower than the temperature 
profile depends on the Prandtl number of the fluid. 

The subject of entrance flow has always been a 
subject ofgreat interest because of its direct engineering 

application. Because of the mathematical difficulties on 
account of the non-linear inertia term, most of the 
solutions in the past were approximate. It is only since 
the last few years. with the advances in computer 
technology, that the numerical solutions for many cases 

have been attempted. 
In the present work. we have obtained the numerical 

solutions in the past were approximate. It is only since 
the last few years. with the advances in computer 
have assumed that the Casson relation accurately 
described the stress rate of strain relation for blood. 

The numerical procedure used is that of Spalding and 
Patankar [I]. The results have been obtained for a 
wide range of yield numbers, and for Prandtl numbers 

equal to 0.7 and 25. The accuracy of the results have 
been checked by comparing the profiles at large axial 
distances with those for fully developed case and the 
developing profiles for Y = 0, with the available results 

for a Newtonian fluid. 

2. GOVERNING EQUATIONS 

For a steady, axisymmetric flow with constant 
properties, the conservation equations of mass, 
momentum and energy are 

(2.1) 

(2.2) 

and 

Here T is the temperature and u and c are the velocity 
components in the axial direction x, and the radial 
direction r (or normal direction y), respectively. The 
boundary conditions are: 

u=o; r=o; T or 
dT D 
~ = constant at r = -, 

c?r 2 

&A 
s= 0; -‘z= 0 at r = 0, and 

?r 

u=fi; T=T, at x=0. (2.4) 

We have assumed that blood can be represented 
rheologically as a Casson fluid. Charm and Kurland [2] 
have shown that for blood the shear stress-shear rate 
relation, which is applicable in the range (CrlOOOOO s- ‘) 
of shear rates is 

J(r) = J(7J + Jwd. (2.5) 

Here z is a shear stress, ~~ is the yield stress, q is a 
shear rate of strain, and p is a constant. The effective 
viscosity p,rr and the effective Prandtl number Preff 

can, therefore, be defined in the following way. 

Preff = cppeif _ = e)ez) = l+(y). (2.7) 

Here Pr is a constant and can be considered as a laminar 
Prandtl number. Our literature survey [Table l] shows 
that the value of laminar Prandtl number for blood is 
about 25. All our computations, therefore, were carried 
out for Pr = 25. In addition, the results for Pr = 0.7 
were obtained in order to check the accuracy of our 
solution with the published results for Pr = 0.7. 

Table 1. Properties of blood 

Value Solution Reference 

Specific heat 
0.94 cal/g”C Plasma 
0.77 RBC 
0.87 Plasma and RBC 
0.92 Whole blood 
0.94 Plasma 

Relative viscosity (ratio to water) 
3.54.0 Whole blood 
2.54.0 Whole blood 
4.71 Whole blood at 20°C 
3.00 Whole blood at 37°C 
1.32-1.22 Plasma 
3.5-5.4 Whole blood 

Apparent viscosity 
0.012 P Plasma 
0.035 P Whole blood 

Thermal conductivity 
0.5 w/m”K Whole blood 
0.506 w/m”K Whole blood 
0.582 w/m”K Plasma 
0.48 1 w/m”K Corpuscles 
1.365 Cal/cm s”C x lo3 Plasma 
1.265 Cal/cm s”C x lo3 Blood 43”j, hemocrit 

8 
2 

9 
10 
10 
10 
11 
11 

It can be seen that for yield stress ~~ equal to zero 

(i.e. yield number Y = 0) the effective viscosity pen is 
constant and thus a Casson fluid with zero yield 
number is a Newtonian fluid. 

3. PROCEDURE 

The numerical procedure used is the one that was 
developed by Spalding and Patankar [l]. The 
coordinates employed are the dimensionless stream 
function w and the distance in the flow direction x. 
The finite-difference equations are formed from 
integrals of the differential equations over small regions 
corresponding with the individual nodes of the grid. 
The numerical procedure employed is of the ‘implicit 



Steady state heat transfer to blood flowing in a tube 119 

finite difference marching integration type’. Therefore, 
at every step in the integration from the values of 4 
(dependent variable) known at a discrete value of o 
for one value of x, the values of r$ at the same values of 
w, but for a slightly greater value of x are evaluated. 
By step-wise repetition of this basic operation, the 
whole field of interest can be covered. For a more 
detailed description of the program one may refer to 
Patankar and Spalding [ 11. 

4. MODIFICATIONS 

There were two major modifications that the 
program required to obtain the solution. One was to 
prescribe the effective viscosity and effective Prandtl 
number relations appropriate to blood in the program. 

The second modification was necessary to evaluate 
the velocity and temperature profiles near the surface. 
In the finite difference equations used, it is assumed 
that the profiles are linear between the grid points. 
However, the changes in the profiles are quite large near 
the wall and without modification considerable error 
could be introduced. Therefore, it was recommended 
by Patankar and Spalding to use a Couette flow 
solution near the tube surface. This solution is used in 
the program to obtain the value of the wall shear stress 
and the parameter Y where 

s 

Yr 
pardy 

Y = O .YE 

J 

. (4.1) 

(P4 rdY 
0 

Here the subscript c represents a position halfway 
between the wall and the last grid point next to it. 

The Couette flow is characterized by the assumption 
that the axial velocity does not change with axial 
distance. Since this region is so thin, the variation due 
to radius can be ignored. With these assumptions, the 
continuity and momentum equations (2.1) and (2.2) 
simplify to 

dr dP 

dy=dx. 

After integrating and substituting the Casson’s relation 
(2.5) with the boundary condition that u = 0 at y = 0, 
we obtain the following expression for velocity. Here 
y is the distance from the surface. 

or in a dimensionless form 

here u* = u/u0 

&A- 
(PU2)c ’ 

& = COUYL 

P ’ 

5=&, 

Y= YIYC, (4.5) 

and T,,, is the wall shear stress. Therefore, the relations 
for the wall shear stress and the parameter Y needed 
by the computer program in terms of the property 
values at a position “I?’ are 

1 F 
S’t_1_q_5F 4J(S+S3!2-(F+S)3i2) (4.6) 

and 

s3/2 _ 2 
(F+S)5’2 

T- 

F 
p/2 

+:7 Ii . (4.7) 

For F = 0, these equations (4.6,4.7) simplify to 

S=[$q+JW] 
and 

(4.8) 

In addition, the program was modified to incorporate 
calculation of a number of parameters of interest to this 
problem. 

5. GRID DISTRIBUTIONS N, o AND AZ 

The grid size is intrinsically linked with the accuracy 
of the solution, the smaller the grid the better the results 
up to a point. After that, any more increase in the 
number ofgrid points increases the round off error. For 
this problem a value for N equal to 40 was found to 
be the optimum. N represents the number of radial grid 
divisions. This number was sufficient to produce very 
accurate results so that increasing N should have little 
additional effect and decreasing it to 30 has limited 
additional error introduced. 

The o distribution represents the radial position on 
the grid points. As the profile variations are steeper 
near the surface, the w distributions were selected such 
as to provide finer grid lines near the surface and at the 
axis. This was to handle the larger gradients which 
occur in those regions. 

The dimensionless forward marching step size is 
defined as 

Ax 
AZ=-------. 

DRePr 
(5.1) 
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Table 2. Values of AZ 

Used for steps Pr = 0.7 Pr = 25 

&IO00 
1001-2000 
2001~3000 
30014000 
4001~5000 
500 l-6000 
6001~7000 
7001~8000 

8.155 x IO_” 4.567 x lo-’ 
2.446 x lo-’ 2.740x 1O-8 
7.337 x lo-’ 1.644 x lo-’ 
2.201 x 10-h 9.865 x lo-’ 
6.603 x lo-’ 5.919 x 10mh 
2.641 x 1O-5 4.735 x 1o-5 
1.057 x 1o-4 3.788 x IO-“ 
4.226 x 1O-4 3.030 x 1om3 

Since the changes in the velocity and temperature 

profiles are large in the entrance region, t@ step size 
was chosen to be very small in the beginning and was 

increased as the flow proceeded downstream (see 
Table 2). A higher Prandtl number causes the thermal 
boundary layer to develop slower than the momentum 
boundary layers. In order to obtain the results in a 
reasonable number of integration steps, the step size for 
a Pr = 25 was made larger than that for Pr = 0.7. 

6. COMPARISON AND ACCURACY OF THE SOLUTION 

There are only two ways to really determine if the 
computer program is indeed solving the problem 

correctly, (i) comparing the fully developed profiles 
generated at the end of the entrance region with the 
analytical solution for a fully developed case [12, 131, 
and (ii) comparing the entrance region results for a 

Newtonian fluid (Y = 0) with those previously 
published results for a Newtonian case. 

6.1 Comparison with fully developed case 
The first point of comparison is the comparison of 

analytical to numerical solutions of the velocity profile. 
Figure 1 shows that the two profiles agree almost 
exactly for yield numbers of 0 and 10. The next point 
of comparison is the temperature profiles at the fully 

developed region. The dimensionless temperature 
chosen was different for each of the heat-transfer 
boundary-conditions. For the case ofconstant heat flux, 

5 
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5 

o3o _ _ Analytical solution 
. Numerical solution ot 2,:1.983 
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Dimensionless mdius. r* 

FIG. 1. Comparison of numerical and 
analytical velocity profiles. 
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FIG. 3. 

QH = (T- T,)/(T,- TJ and the numerical results are 
shown in Fig. 2 to be in very close agreement with 
the analytical expressions [12] for yield number = 0. 
For the case of constant surface temperature, 
0~ = (T, - T)/(T,‘, - T,), again, the numerical results and 
the analytical results are in good agreement (see 
Fig. 3). Finally the asymptotic values of the Nusselt 
number were also found to be in agreement with the 
fully developed flow case [12, 131 solution. 

6.2 Comparison with Newtonianjow case 

The second method of checking if the numerical 
solution is correct is to compare it to the case of a 
Newtonian fluid flowing in a tube subjected to the same 
boundary conditions. The case of Newtonian fluid flow 
has been attempted by many investigators [14-161, 
each with variations which make each one slightly 
different. Probably the best solution obtained was by 
Manohar [ 141, as he used a method which should have 
produced little or no linearization error in the com- 
putation which was not the case in a previous case that 
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7. PRESENTATION OF THE RESULTS 

The results of the heat transfer in the entrance region 
for blood were obtained for yield numbers of 0, 0.1, 
1, 2, 5, 10, and 20, and Prandtl numbers of 0.7 and 
25. Figures 6 and 7 represent the local Nusselt number 

i3mtmt surface temp 

0 , 

/ 

FIG. 4. Comparison of entrance region solution for 
Newtonian flow (Prandtl number = 0.7). 

included the radial velocity term [16]. Figure 4 shows 
that thenumerical procedure used is in good agreement 
with the results of Manohar for both the case of 
constant heat flux and constant surface temperature. 

6.3 Comparison with experimental work 
As far as the experimental work is concerned, there 

are only two references, Mitvalsky [17] and Charm 
[lS], that deal with heat transfer to blood flow. In 
Charm’s work it was noted that there is essentially no 
difference in heat-transfer rates between whole blood 
and plasma indicating that the blood cells have little 
influence so heat transfer or the inherent assumption 
of a homogeneous fluid Casson’s relation should not be 
a significant problem. Their data is represented in Fig. 5, 

FIG. 5. Prandtl number = 25, constant surface temperature 
case. 

along with our numerical solution for Pr = 25. It can 
be seen that our numerical results are in agreement 
with the experimental measurements of Mitvalsky and 
Charm in the entrance region. It should be noted here 
that their Nusselt number 

. N 

4 D 
(6.1) 

is referenced to a mean temperature that is the average 
between the entrance of the tube and the downstream 
point under consideration. While in our work the 
Nusselt number 

hD “’ D ____- 
lVu = i? = (T,B T,) K (6.2) 

is referenced to the average temperature at the point 
under consideration. 

---- Meon hhsseit number C(IW 
- Local Nusselt number case 

-I oh 
IO 100 1000 

Z, =Re Pr/WD) 

FIG. 6. Local and mean Nusselt number vs downstream 
distance for the constant heat flux case Prandtl num- 

ber = 25. 

2, = Re Pr/(x/O) 

FIG. 7. Nusseit number vs downstream distance for the 
constant surface temperature case Prandtl number = 25. 
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FIG. 8. Developing temperature profiles for 
the constant surface temperature case, yield 

number = 5, Prandtl number = 0.7. 
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FIG. 9. Effect of Prandtl number constant heat flux case. 

and mean Nusselt numbers for the entrance region for 
Prandtl numbers of 25. The development of the 
temperature profiles for a yield number of 5 is shown 

in Fig. 8 for Pr = 0.7, and the effect of Prandtl number 
on heat-transfer rate is shown in Fig. 9. 

8. CONCLUDING REMARKS 

So far as we know there is no known solution 
available for heat transfer either in the entrance region 
or in the fully developed region for a fluid which obeys 
the Casson stress-strain relation. Having confirmed 
that these results are in excellent agreement with (i) the 
fully developed region for all yield numbers, and (ii) the 
entrance region for a zero yield (Newtonian fluid), it 
can be inferred that the results obtained are accurate 
to within the limits of the computational round off 
error. In fact, the solution of the momentum equation 
is more accurate than Shah and Soto’s [19], due to a 
finer grid size and better definition of the apparent 
viscosity. 

In a set of results obtained for Prandtl number = 0.7, 
it was observed that the yield number does not have 
much of an influence on the Nusselt number in the 

early parts of the thermal entrance region. This may 
be due to the fact that the flow is still developing and 
that the velocity profiles are similar in shape in the 
developing region for all yield numbers. Because the 
velocity profiles are nearly identical. the resulting 
temperature profiles will also be nearly the same. This 
results in the Nusselt number being almost independent 
of yield number while in the entrance region. However. 
as the flow develops the effect of the yield stress will 
become more pronounced as the plug flow region 

remains for higher yield numbers, but disappears for a 
Newtonian fluid. The higher the yield number, the 
earlier this effect takes place and the higher the resulting 
fully developed Nusselt number. 

The effect of increasing the Prandtl number (see 
Fig. 9) is to delay the development of the thermal 
boundary layer in comparison to the velocity boundary 
layer. Therefore, the yield number has influence on the 
Nusselt number in the entrance region and the resulting 

Nusselt number is lower for the same value of ZI for 
a Prandtl number of 25 than for a Prandtl number 
of 0.7. In the fully developed region the Prandtl 
number has no influence. 
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CONVECTION, EN REGIME PERMANENT, DUN ECOULEMENT SANGUIN 
DANS LA REGION INITIALE DUN TUBE 

183 

RCum&Le present travail a permis l’obtention de solutions numeriques des equations du mouvement 
et de l’energie pour un ecoulement sanguin dans un tube. On a suppose que le comportement non- 
newtonien du sang pouvait etre d&tit par l’iquation de Casson. La procedure numerique utilisee est 
celle de Patankar et Spalding J_I J. Les risultats ont ete obtenus dans les deux cas suivants: (i) temperature 
de paroi uniforme et (ii) flux parietal constant pour les valeurs suivantes du groupement Y = T,.D/L(I~: 

O;O,l; 1;2;5; lOet20. 

DER STATIONARE WARMEUBERGANG AN BLUT IM 
EINGANGSBEREICH VON ROHREN 

Zusammenfassung-Es werden numerische Losungen der Impuls- und Energiegleichung fur Blut, das in 
einem Rohr stromt, angegeben. Es wird angenommen, dab das nichtnewton’sche Verhalten von Blut 
durch die Casson-Gleichung beschrieben werden kann. Zur Berechnung wird das Patankar-Spalding- 
Verfahren [l] verwendet. Fur die beiden Falle gleichformiger Oberfllchentemperatur bzw. gleichformiger 
Wiirmestromdichte werden die Ergebnisse fur die Kennzahlen Y(= s,,O/ii~) = 0; 0,l; 1; 2; 5; 10 und 20 

angegeben. 

CTAHMOHAPHbI~ IIEPEHOC TEI-IJIA K IIOTOKY KPOBM B HAYAJIbHOM 
YYACTKE TPY6bI 

hillOTBlVlR - B L@HHOfi pa6ore IIOJlj’WHbl WfCJIeHHbIC pWleHWi YpaBHeHHR KOJlHYCCTBa IIBB~KCHAfl 

U 3Heprliii AJUI Tt?iCHllll KPOBli B rpy6e. ~pWIO,WaeTCSI, ‘IT0 H’ZHblOTOHOBCKOC IIOBejleHHC KpOB&i 

MOXCHO OnWCaTb C IlOMOLUbEO YpaBHCHRR Ksccona. kkIIOJlb3yCMbl~ YkiCJlCHHblfi MeTOn aHWlOrA’ieH 
MeTOny, OnHCaHHOMy ,-hTaHKapOM H CIIOfl,JHHI-OM B [I]. k3yJlbTaTbl IIO,IyYCHbl lI,lR nByX C,,yYaCB: 

(1) llOCTORHHOii TCMllCpaTypbI nOBk?pXHOCTM A (2) IlOCTORHHOrO TCIIJlOBOrO IlOTOKa Ha nOBepXHOCTA 

llpki llHEN?KCC TCKy’iCCTW Y(- ‘ryf+i/L) = 0; 0.1; 1; 2; 5; 10 A 20. 


